НЕІНФЕКЦІЙНІ ЗАХВОРЮВАННЯ: КОНЦЕПЦІЯ ЗАГАЛЬНОГО КОНТИНУУМУ РОЗВИТКУ ПАТОЛОГІЇ (ПЕРШЕ ПОВІДОМЛЕННЯ)

  • O.P. Mintser Національний університет охорони здоров'я України імені П.Л. Шупика
  • М.М. Potiazhenko Полтавський державний медичний університет
  • G.V. Nevoit Полтавський державний медичний університет
Ключові слова: неінфекційні захворювання, коморбідність, серцево-судинні захворювання, загальний континуум, серцевосудинний континуум.

Анотація

В статті з позицій системної медицини представлений новий погляд на системність і поступовість розвитку неінфекційних захворювань у межах загального континууму. Мета дослідження – поглибити знання етіопатогенезу неінфекційних захворювань шляхом концептуалізації моделі поступового розвитку й етапності прогресування коморбідності із визнанням системності у межах загального континууму. Матеріали і методи. Для виявлення, узагальнення питань виникнення і прогресування коморбідної патології при неінфекційних захворюваннях із наступним синтезом знань і концептуальною відбудовою у так званому загальному континууму неінфекційних захворювань застосовувались загальнонаукові та теоретичні методи, логічні методи та правила нормативного характеру. Результати. Наведено результати системного медичного аналізу, згідно чого пропонується новітній підхід із визнанням системності і поступовості розвитку неінфекційних захворювань у межах загального континууму, а також визначено новітній універсальний патогенетичний механізм їх виникнення і прогресування – мітохондріальна дисфункція, який органічно доповнює теорію серцево-судинного континууму. Висновки. 1) Мітохондріальна дисфункція є універсальним патогенетичним компонентом квантового рівню патогенезу неінфекційних захворювань, який органічно доповнює теорію серцево-судинного континууму. 2) З огляду на системність і поступовість розвитку патогенетичних механізмів неінфекційних захворювань для їх розгляду пропонується концепція моделі загального континууму, частиною якого виявляється серцевосудинний континуум. 3) При веденні хворих на неінфекційні захворювання оцінка всієї наявної коморбідної патології є важливою для визначення правильного, адекватного, індивідуального профілактично-лікувального підходу відповідно до вимог 4П-медицини.

Посилання

1. WHO. Noncommunicable diseases. 2021; [Elektronnyi resurs]. URL: http://www.who.int/news-room/fact- sheets/detail/noncommunicable-diseases

2. Kruglyy stil Verkhovnoyi Rady na temu «Peremogty smert: klyuchovi chynnyky, shcho vplyvayut na tryvalist zhyttya ukrayintsiv» vid 10 chervnya 2019 roku [Round table of the Verkhovna Rada on "Overcoming death: key factors affecting the life expectancy of Ukrainians" of June 10, 2019] [Internet]. 2019 [tsytovano 2019 Ver 25]. URL: https://rada.gov.ua/print/172805.html. (Ukraine)

3. Рotyazhenko MM, Nevoіt АV. Neynfektsyonnye zabolevanyya: poysk alternatyvnykh reshenyy problemy s byofyzycheskykh pozytsyy [Non-communicable diseases: search for alternative solutions to the problem from biophysical positions]. Praktykuyuchiy likar. 2019. 1:57-62. (Russian)

4. STEPwise approach to surveillance (STEPS). 2021. [STEPS portal]. Geneva: World Health Organization URL: https://www.who.int/ncds/surveillance/steps/en (English)

5. OON. Novosti OON. Neinfekcionnye zabolevaniya sredi zhitelej Ukrainy: faktory riska [Noncommunicable diseases among residents of Ukraine: risk factors]. URL: https://news.un.org/ru/story/2020/11/1390612 (Ukraine)

6. Kumar A. The impact of obesity on cardiovascular disease risk factor. Asian Journal of Medical Sciences. 2019;10(1):1-12.

7. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390:2627-2642.

8. Branca F, Lartey A, Oenema S, et al. Transforming the food system to fight non-communicable diseases. BMJ. 2019; 364: 1296.

9. Rossello X, Dorresteijn JA, Janssen A, et al. Risk prediction tools in cardiovascular disease prevention: a report from the ESC Prevention of CVD Programme led by the European Association of Preventive Cardiology (EAPC) in collaboration with the Acute Cardiovascular Care Association (ACCA) and the Association of Cardiovascular Nursing and Allied Professions (ACNAP). Eur. J. Prev. Cardiol. 2019 ;26:1534-1544.

10. Kobyakova OS, Deev IA, Kulikov ES, et al. Hronicheskie neinfekcionnye zabolevaniya: effekty sochetannogo vliyaniya faktorov riska [Chronic non-communicable diseases: effects of the combined influence of risk factors.]. Profilakticheskaya medicina. 2019;22(2):45-50. (Russian)

11. Baevskiy RM. Prognozirovanie sostoyaniya na grani norm i patologii [Forecasting the state on the verge of norms and pathology]. Moskva: Kniga po trebovaniyu, 2014. 295 s. (Russian)

12. Peplow P, Adams J, Young T. Cardiovascular and Metabolic Disease: Scientific Discoveries and New Therapies. Royal Society of Chemistry, 2015. 376 р.

13. Nesin AO. Khronichni neinfektsiini zakhvoriuvannia: aktsent na multymorbidni patolohichni stany ta kardiovaskuliarnyi ryzyk [Chronic non-communicable diseases: focus on multimorbid conditions and cardiovascular risk.]. Ukrainskyi terapevtychnyi zhurnal. 2019; [Internet]. URL: (Ukraine)

14. Dzau VJ, Braunwald E. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am. Heart. J. 1991;121:1244-1263.

15. Bolezni serdca po Braunval'du [Heart disease according to Braunwald] T.1: rukovodstvo po serdechno-sosudistoj medicine. Logosfera, 2011. 624 с. (Russian)

16. Dzau VJ, Antman EM, Black HR, et al. The Cardiovascular Disease Continuum Validated: Clinical Evidence of Improved Patient Outcomes. Part I: Pathophysiology and Clinical Trial Evidence (Risk Factors Through Stable Coronary Artery Disease). Circulation. 2006;114(25):2850-2870.

17. Podzolkov VI, Osadchij KK. Serdechno–sosudistyj kontinuum: mogut li ingibitory APF razorvat' «porochnyj krug»? [Serdechno– sosudistyj kontinuum: mogut li ingibitory APF razorvat' «porochnyj krug»?] RMZH. 2008;17:1102. (Russian)

18. Chopej ІB, Rosul MM, Gechko MM. et al. Sercevo-sydinnij kontinuum: rol simejnogo likarya v profilaktici sercevo-sudinnih zahvoryuvan [Cardiovascular continuum: the role of the family doctor in the prevention of cardiovascular disease]. Wiadomoýci Lekarskie. 2014; 2:243-247. (Ukraine)

19. Katerenchuk IP. Sertsevo-sudynnyi kontynuum – faktory ryzyku ta endotelialna dysfunktsiia: zavdannia i mozhlyvosti simeinoho likaria shchodo vplyvu na pervynni lanky [Cardiovascular continuum risk factors and endothelial dysfunction: tasks and opportunities of the family doctor to influence the primary level]. Praktychna anhiolohiia. 2008;5(16):47-52. (Ukraine)

20. Prejbisz A, Kołodziejczyk‑Kruk S, Dobrowolski P, Januszewicz A. Diagnostyka i leczenie hiperaldosteronizmu pierwotnego. Podsumowanie stanowiska European Society of Hypertension. 2020. Med. Prakt. 2020;11:32-40.

21. Zyryanov SK, Bajbulatova E.A. Medikamentoznaya korrekciya modificirovannyh faktorov riska kak odna iz vedushchih strategij vedeniya pacientov s serdechno-sosudistymi zabolevaniyami. Medikamentoznaya korrekciya modificirovannyh faktorov riska kak odna iz vedushchih strategij vedeniya pacientov s serdechnososudistymi zabolevaniyami [Drug correction of modified risk factors as one of the leading strategies for managing patients with cardiovascular diseases. Drug correction of modified risk factors as one of the leading strategies for managing patients with cardiovascular diseases]. Medicinskij Sovet. 2019;(21):22-38. (Russian)

22. Mintser OP, Potiazhenko MM, Nevoit GV. Mitokhondrialna dysfunktsiia u zahalnomu kontynuumi neinfektsiinykh zakhvoriuvan iz pozytsii systemnoi medytsyny. chastyna I [Mitochondrial dysfunction in the general continuum of noncommunicable diseases from the standpoint of systemic medicine. part I. Ukrainian medical journal]. Ukrainskyi medychnyi chasopys. 2022:2. URL: https://www.umj.com.ua/wp/wp- content/uploads/2022/02/5082.pdf?upload= (Ukraine)

23. Luis AV, Marimán A, Ramos B, et al. Standpoints in mitochondrial dysfunction: Underlying mechanisms in search of therapeutic strategies. Mitochondrion. 2022;63:9-22.

24. Nibali L, Henderson B (Eds). The Human Microbiota and Chronic Disease: Dysbiosis as a Cause of Human Pathology, 1th Edition. by John Wiley & Sons, 2016. 544p.

25. Khan NA, Govindaraj P, Meena AK, Thangaraj K. Mitochondrial disorders: challenges in diagnosis & treatment. Indian J. Med. Res.2015;141(1):13-26.

26. Neis EPJG, Dejong CHC, Rensen SS. The Role of Microbial Amino Acid Metabolism in Host Metabolism. Nutrients. 2015;7(4):2930-2946.

27. Picard M, Wallace DC, Burelle Y. The rise of mitochondria in medicine. Mitochondrion. 2016;30:105-116.

28. Taddeo EP, Laker RC, Breen DS, et al. Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle. Molecular Metabolism. 2014;3:124-134.

29. Korzeniewski B. Effects of OXPHOS complex deficiencies and ESA dysfunction in working intact skeletal muscle: implications for mitochondrial myopathies. Biochimica et Biophysica Acta (BBA). Bioenergetics. 2015;1847:1310-1319.

30. Clark A, Mach N. Mitochondria, Microbiota, and Endurance Exercise compounds. Gastroenterol. Res. Pract. 2015: e398585.

31. Chen Y-M, Wei Li, Chiu Y-Sh, et al. Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients. 2016;8:205.

32. Huertas JR, Casuso RA, Agustín PH, Cogliati S. Stay Fit, Stay Young: Mitochondria in Movement: The Role of Exercise in the New Mitochondrial Paradigm. Oxid. Med. Cell Longev. 2019; eCollection 2019 Jun:7058350.

33. Gremmingera VL, Harrelsona EN, Crawforda TK, et al. Skeletal muscle specific mitochondrial dysfunction and altered energy metabolism in a murine model (oim/oim) of severe osteogenesis imperfecta. Molecular Genetics and Metabolism. 2021;4(132):244253.

34. Nevoit GV. Bioimpendansna otsinka skladu tila yak dotsilnyi suchasnyi biofizychnyi instrumentalnyi metod obiektyvnoho obstezhennia patsiientiv terapevtychnoho profiliu i funktsionalno zdorovykh osib [Bioimpedance assessment of body composition as an appropriate modern biophysical instrumental method of objective examination of patients with therapeutic profile and functionally healthy individuals]. Ukrainskyi zhurnal medytsyny, biolohii ta sportu.2020;1(23):156-160. (Ukrainian)

35. Nevoit GV. Otsinka klinichnoi efektyvnosti sposobu vyznachennia personifikovanoi korektsii styliu zhyttia patsiientiv ta novi perspektyvni predyktory neinfektsiinykh zakhvoriuvan [Evaluation of clinical effectiveness of the method of determining personalized lifestyle correction of patients and new promising predictors of non-communicable diseases]. Ukrainskyi terapevtychnyi zhurnal. 2021;1:20-25. (Ukrainian)

36. Borisova O. Mitohondrial'naya medicina. CHast' 2. Nauchnyj obzor [Mitochondrial medicine. Part 2. Scientific review] [Internet] URL:https://openlongevity.org/mitochondria_medicine_2 (Russian)

37. Scherbakova E. Pitanie biohakera. Kak pitatsya, chtobyi byit effektivnyim i zamedlit starenie [Biohacker nutrition. How to eat to be effective and slow down aging]. Litres, 2020. 286 с. (Russian)

38. Espin JC, Gonzalez-Sarrias A, Tomas-Barberan FA. The gut microbiota: A key factor in the therapeutic effects of (poly) phenols. Biochem. Pharmacol. 2017;139:82-93.

39. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014;94(3):909-950.

40. Boelsterli UA, Redinbo MR, Saitta KS. Multiple NSAID -induced hits injure the small intestine: underlying mechanisms and novel strategies. Toxicol. Sci. 2013;131(2):654-667.

41. Kalghatgi S, Spina CS, Costello JC, et al. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. Sci. Transl. Med. 2013;5:192ra85.

42. Bhonchal S, Nain CK, Prasad KK, et al. Functional and morphological alterations in small intestine mucosa of chronic alcoholics. J. Gastroenterol. Hepatol. 2008;23(2):278-285.

43. Moullan N, Mouchiroud L, Wang X, et al. Tetracyclines Disturb Mitochondrial Funcrion across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell Reports. 2015;10:16811691.

44. Rong Y, Urban L, Monica N, Jian Z. Regulation of Mammalian Mitochondrial Dynamics: Opportunities and Challenges. Frontiers in Endocrinology. 2020;11: 375-8.

45. Mach N, Fuster-Botella D. Endurance exercise and gut microbiota: A review. J. Sport Health Science. 2017;6:179-197.

46. Saint-Georges-Chaumet Y, Edeas M. Microbiota–mitochondria inter-talk: consequence for microbiota-host interaction. Pathogens Dis. 2016;74:ftv096.

47. Zorov DB, Plotnikov EY, Silachev DN, et al. Microbiota and Mitobiota. Putting an Equal Sign between Mitochondria and Bacteria. Biochemistry-Moscow. 2014;79(10):1017-1031.

48. Franco-Obregon A, Gilbert JA. The Microbiome-Mitochondrion connection: Common Ancestries, Common Mechanisms, Common Goals. mSystems. 2017;2(3):e00018-17.

49. Shenderov BA. The microbiota as an epigenetic control mechanism. in book: The Human Microbiota and Chronic Disease, 2016:179-197.

50. Sinha P, Islam MN, Bhattacharya S, Bhattacharya J. Intercellular mitochondrial transfer: bioenergetic crosstalk between cells. Current Opinion in Genetics & Development. 2016;38:97-101.

51. Wang Y, Wu Y, Wang Y, et al. Antioxidant Properties of Probiotic Bacteria. Nutrients. 2017;9:521.

52. Johnsona J, Mercado-Ayona E, Mercado-Ayonb Y, et al. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Archives of Biochemistry and Biophysics. 2021;702:108698

53. Nunes C, Laranjinha J. Nitric oxide and dopamine metabolism converge via mitochondrial dysfunction in the mechanisms of neurodegeneration in Parkinson's disease. Archives of Biochemistry and Biophysics. 2021;15(704):108877.

54. Yanga Y, Liua Y, Zhua J, et al. Neuroinflammation-mediated mitochondrial dysregulation involved in postoperative cognitive dysfunction. Free Radical. Biology and Medicine. 2022:178:134146.

55. Ramachandran A, Moellering DR, Ceaser E, et al. Inhibition of mitochondrial protein synthesis results in increased endothelial cell susceptibility to nitric oxide-induced apoptosis. Proc. Natl. Acad. Sci. USA. 2002:99:6643-6648.

56. Angelova PR, Abramov AY. Role of mitochondrial ros in the brain: from physiology to neurodegeneration. FEBS Letters. 2018;592:692-702.

57. Wallace DC, Chalkia D. Mitochondrial DNA genetics and the hetertoplasmy conundrum in evolution and disease. Cold Spring Harb Perspect. Biol. 2013;5:a021220.

58. Larson-Casey JL, He C, Carter AB. Mitochondrial quality control in pulmonary fibrosis. Redox Biology. 2020;33:article 101426.

59. Picard M, McManus MJ, Gray JD, et al. Mitochondria functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. PNAS. 2015;16:6614-6623.

60. Senft D, Ronai ZA. Regulators of mitochondrial dynamics in cancer. Curr. Opin. Cell Biol. 2016.39:43-52.

61. Postnov IuV. The role of mitochondrial calcium overload and energy deficiency in pathogenesis of arterial hypertension. Arkh. Patol. 2001;63(3):3-10.

62. Yao PM, Tabas I. Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J. Biol. Chem. 2001;276(45):42468-42476.

63. Ballinger SW. Mitochondrial dysfunction in cardiovascular disease. Free Radic. Biol. Med. 2005;38(10):1278-1295.

64. Pohjoismäki JL, Goffart S, Taylor RW, et al. Developmental and pathological changes in the human cardiac muscle mitochondrial DNA organization, replication and copy number. PLoS One. 2010;5(5):e10426.

65. Rudolph V, Rudolph TK, Schopfer FJ, et al. Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion. Cardiovasc. Res. 2010;85(1):155-166. (English)

66. Armstrong JS. Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br. J. Pharmacol. 2007;151(8):11541165. (English)

67. Luk TH, Dai YL, Siu CW, et al. Habitual physical activity is associated with endothelial function and endothelial progenitor cells in patients with stable coronary artery disease. Eur. J. Cardiovasc. Prev. Rehabil. 2009;16(4):464-471.

68. Frye GJ, Rose S, Slattery J, MacFabe DF. Gastrointestinal dysfunction in autism spectrum disorder: the role of the mitochondria and the enteric microbiome. Microb. Ecol. Health Dis. 2015;26:27458.

69. Ivanova II, Gnusaev SF, Suhorukov VS, Goncharova OV, Kameldenova DB. Proyavleniya mitohondrialnoy disfunktsii u detey s displaziey soedinitelnoy tkani i hronicheskim gastroduodenitom [Manifestations of mitochondrial dysfunction in children with connective tissue dysplasia and chronic gastroduodenitis. Ros. вестн. perinatol. and pediatrician]. Ros. vestn. perinatol. i pediatr. 2019;64:(5):84-90.

70. Yue L, Yao H. Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. British Journal of Pharmacology. 2016;15(173):2305-2318.

71. Zhou W, Qu J, Xie S, Sun Y, Yao H. Mitochondrial Dysfunction in Chronic Respiratory Diseases: Implications for the Pathogenesis and Potential Therapeutics. Oxidative Medicine and Cellular Longevity. 2021: Article ID 5188306.

72. Pozdnyakova A.A., Volodina M.A., Rshtuni S.D., et al. Mitohondrialnaya disfunktsiya kak odna iz vozmozhnyih prichin narusheniya follikulo i steroidogeneza pri prezhdevremennoy nedostatochnosti yaichnikov [Mitochondrial dysfunction as one of the possible causes of follicle and steroidogenesis disorders in premature ovarian failure]. Akusherstvo. Ginekologiya. Reproduktsiya. 2015; 4:55-65. (Russian)

73. Walter H, Moos DV, Faller IP, et al. Pathogenic mitochondrial dysfunction and metabolic abnormalities. Biochemical Pharmacology. 2021;193:114809.

74. Knight-Lozano CA, Young CG, Burow DL, et al. Cigarette smoke exposure and hypercholeste rolemia increase mitochondrial damage in cardiovas cular tissues. Circulation. 2002;105:849-854.

75. Cudakov NP, Nikiforov SB, Konstantinov YuM, et al. Mitohondrialnaya disfunktsiya v mehanizmah aterogeneza [Mitochondrial dysfunction in the mechanisms of atherogenesis]. Byulleten VSNTs SO RAMN. 2007;2(54): 119-123. 2007;2(54): 119-123. (Russian)

76. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, Ji X, Lo EH. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613) 551-555.

77. Egorova LA, Ezhov MV, Shiganova GM, Postnov AYu. Vozmozhnaya rol mutatsiy mitohondrialnogo genoma pri ishemicheskoy bolezni serdtsa [Possible role of mitochondrial genome mutations in coronary heart disease.]. Klinitsis 2013;2:6-13. (Russian)

78. Wu C, Zhang Z, Zhang W, Liu X. Mitochondrial dysfunction and mitochondrial therapies in heart failure. Pharmacological Research. 2022;175:106038.

79. Bisaccia G, Ricci F, Gallina S, Di Baldassarre A, Ghinassi B. Mitochondrial dysfunction and heart disease: Critical appraisal of an overlooked association. Int. J. Mol. Sci. 2021;22(2):614.

80. Zorov DB, Isaev NK, Plotnikov EY, Silachev DN, Zorova LD, Pevzner IB, Morosanova MA, et al. Perspectives of Mitochondrial Medicine. Biochemistry – Moscow. 2013;78(9):979-990.

81. Bordi M, Nazio F, Campello S. The Close Interconnection between Mitochondrial Dynamics and Mitophagy in cancer. Front Oncol. 2017;7:1-9.

82. Birsoy K, Possemato R, Lorbeer FK, et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature. 2014;508:108-112.

83. Stewart JB, Alaei-Mahabadi B, Sabarinathan R, Samuelsson T, Gorodkin J, Gustafsson CM, Larsson E. Simultaneous DNA and RNA mapping of somatic mitochondrial mutations across diverse human cancers. PLoS Genet. 2015;11:e1005333.

84. Karaa A, Goldstein A. The spectrum of clinical presentation, diagnosis, and management of mitochondrial forms of diabetes. Pediatr. Diabetes. 2015;16(1):1-9.

85. Okovityiy SV. Mitohondrialnaya disfunktsiya pri metabolicheskom syndrome [Mitochondrial dysfunction in metabolic syndrome]. Efektivnaya farmakoterapiya. 2015; 16: 46-48. (Russian)

86. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, MannerasHolm L, et al. Metformin alters the gut microbiome of individuals with treatment-naéve type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 2017;23(7):850-858.

87. Jin H, Kanthasamy A, Ghosh A, et al. Mitochondria-targeted antioxidants for treatment of Parkinson's disease: preclinical and clinical outcomes. Biochim. Biophys. Acta. 2014;1842:1282-1294.

88. Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: etiologies and therapeutic strategies. Life Sciences. 2019;218:165184.

89. Merlini E, Coleman MP, Loreto A. Mitochondrial dysfunction as a trigger of programmed axon death. Elsevier. 2022;45:53-63.

90. Nikolaeva EA. Mitohondrialnyie bolezni u detey: klinicheskie proyavleniya, vozmozhnosti diagnostiki i lecheniya [Mitochondrial diseases in children: clinical manifestations, diagnostic and treatment options]. Uchebnoe posobie. Moskva, 2017. 88s (Russian)

91. Hrechanina YuB., Hrechanina OIa., Shkolnikova DV. Mitokhondrialni khvoroby: henetychna epidemiolohiia, diahnostyka ta likuvannia [Mitochondrial diseases: genetic epidemiology, diagnosis and treatment], Pediatriia. 2020;4(55). Spetsializovanyi medychnyi portal [Internet]. URL: https://healthua.com/article/61887-mtohondraln-hvorobi-genetichnaepdemologya-dagnostika-talkuvannya (Ukraine)

92. Mintser OP, Zaliskyi VM. Systemna biomedytsyna. Tom 1 Kontseptualizatsiia [Systemic biomedicine. Volume 1 Conceptualization]. Kyiv: Interservis, 2019. 549 s. (Ukraine)

93. Mintser OP, Potiazhenko MM, Nevoit HV. Mahnitoelektrokhimichna teoriia obminu rechovyn. Tom 1 Kontseptualizatsiia [Magnetoelectrochemical theory of metabolism. Volume 1 Conceptualization]. Kyiv-Poltava: Interservis, 2021. 352 s. (Ukraine)

94. Murphy E, Ardehali H, Balaban RS, et al. American Heart Association Council on Basic Cardiovascular Sciences, Council on Clinical Cardiology, and Council on Functional Genomics and Translational Biology. Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement From the American Heart Association. Circ Res. 2016;118(12):1960-91.
Опубліковано
2022-04-20
Як цитувати
Mintser, O., PotiazhenkoМ., & Nevoit, G. (2022). НЕІНФЕКЦІЙНІ ЗАХВОРЮВАННЯ: КОНЦЕПЦІЯ ЗАГАЛЬНОГО КОНТИНУУМУ РОЗВИТКУ ПАТОЛОГІЇ (ПЕРШЕ ПОВІДОМЛЕННЯ). Актуальні проблеми сучасної медицини: Вісник Української медичної стоматологічної академії, 22(1), 203-210. https://doi.org/10.31718/2077-1096.22.1.203